

 Technical Report
NREL/TP-xxx-xxxxx
March 2010

Documentation of Updates to
FAST, A2AD, and AeroDyn
Released March 31, 2010,
Including the Revised AeroDyn
Interface
ALPHA VERSION
FAST v7.00.00
A2AD v13.00.00
AeroDyn v13.00.00

B. J. Jonkman,
J. M. Jonkman

National Renewable Energy Laboratory
1617 Cole Boulevard, Golden, Colorado 80401-3393
303-275-3000 • www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC

Contract No. DE-AC36-08-GO28308

Technical Report
NREL/TP-xxx-xxxxx
March 2010

Documentation of Updates to
FAST, A2AD, and AeroDyn
Released March 31, 2010,
Including the Revised AeroDyn
Interface
ALPHA VERSION
FAST v7.00.00
A2AD v13.00.00
AeroDyn v13.00.00

B. J. Jonkman,
J. M. Jonkman

Prepared under Task No. WE10.3112

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States
government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste

http://www.osti.gov/bridge�
mailto:reports@adonis.osti.gov�
mailto:orders@ntis.fedworld.gov�
http://www.ntis.gov/ordering.htm�

1

Introduction

This document has been designed to guide the user through the changes in FAST v7.00.00,
ADAMS-to-AeroDyn (A2AD) v13.00.00, and AeroDyn v13.00.00, released March 31, 2010.
Many changes result from a new interface to AeroDyn and linking the codes with the NWTC
Subroutine Library. The document is arranged in several sections. The first section describes the
changes in functionality that have occurred in the release of AeroDyn v13.00.00 and the NWTC
Design Codes that link with it: FAST v7.00.00 and ADAMS-to-AeroDyn (A2AD) v13.00.00.
The second section documents the new AeroDyn interface, describing the inputs and outputs of
the functions and subroutines available in AeroDyn v13.00.00. The third section lists the known
issues with the AeroDyn interface that we have not fixed in this release. This document also
serves as a temporary amendment to the user’s guides for AeroDyn, FAST, and A2AD before
official updates are published.

Changes due to the New AeroDyn Interface, Bug Fixes, and New
Features

Many changes were made in the NWTC design-code suite to interface with AeroDyn v13.00.00,
use NWTC Subroutine Library v1.02.00, and compile with Intel Visual Fortran. Other changes
incorporate features from prior alpha versions that have been thoroughly tested. The major
changes that affect functionality and implementation are described below. For a more
comprehensive list of the changes, see the individual “ChangeLog.txt” files contained in their
archives, which are on our Web site: http://wind.nrel.gov/designcodes/. You do not need to
change any of your input files to upgrade from AeroDyn v12.58 or FAST v6.01 (or v6.02c-jmj).

AeroDyn v13.00.00
The following items have changed relative to what is documented in the latest AeroDyn User’s
Guide for v12.58 (Laino and Hansen, 2002):

• The system units input must be “SI” because English units are no longer allowed.

• The “error.log” file is no longer generated. All error messages are written to the screen,
instead. If you want the error messages printed in a file, you can redirect the screen output to
a command prompt: e.g., “FAST.exe Primary.fst > tmp.out” runs FAST.exe using input file
“Primary.fst,” writing the messages that are normally printed to the screen in the file
“tmp.out.”

• The compatibility between the RELM and DR input arrays is now checked in AeroDyn (in
previous versions, this was one done by FAST instead of AeroDyn).

• The tower influence model documented in the AeroDyn Theory Manual (Moriarty and
Hansen, 2005) (with upwind tower wake effects) has been added as a “hidden” feature.
Please note that this model (as well as the default tower shadow model) assumes that the
tower never moves or deflects. To use the new model, you must (1) create a new tower input
file (see “AeroDyn_Tower.dat” in the AeroDyn archive’s “Samples” folder) and (2) change
your AeroDyn input file (see “AeroDyn_TowerInfl.ipt” in the AeroDyn archive’s “Samples”
folder) as follows:

http://wind.nrel.gov/designcodes/�

2

o TwrShad must be set to the text “NEWTOWER”

o A new TwrPotent variable (T/F flag) replaces the ShadHWid line

o A new TwrShadow variable (T/F flag) replaces the T_Shad_Refpt line

o A new line with variable TwrFile (name of the tower input file) follows the
TwrShadow line (just before Rho [AirDens]).

• AeroDyn does not check for the name of the structural-dynamics program with which it is
linked. As a result, it does not change what is printed in the “.opt” file based on the structural
dynamics program. (See the A2AD v13.00.00 section for details.)

• The “.opt” output file no longer contains information about the wind inflow file (except the
file name). Other information—such as the tip- and hub-loss constants—is now printed in
this file.

• The input height (AeroDyn’s Z component, which is the third element of the position vector)
is now relative to the ground, not the undeflected hub height. (This only affects the internals
of AeroDyn.)

• The wind-inflow routines have been removed from AeroDyn to a new Wind Inflow module
(see the following subsection). This keeps the details of all the different wind types out of
AeroDyn.

• AeroDyn v13.00.00 uses NWTC_Library source files, and the number of AeroDyn source
files has changed. Most routines have been wrapped inside modules.

• The AeroDyn v13.00.00 interface takes advantage of some features from the Fortran 2003
standard (specifically, allocating parts of derived types during run time). Some compilers
may not support these features.

Wind Inflow (AeroDyn v13.00.00)
This is a new module contained in the AeroDyn archive. It contains sub-modules for hub-height
wind files, TurbSim’s binary full-field wind files (both “.wnd” and “.bts”) and optional coherent
structures, four-dimensional wind files, and user-defined wind routines. An overview of the
module is pictured in Figure 3. The module contains some differences from the behavior when
these files were part earlier versions of AeroDyn:

• TurbSim-format (“.bts”) files can now be used.

• Hub-height files are read in their entirety at the beginning of a simulation. The warning
about reading the last record in the file does not exist anymore.

• The wind files (including hub-height files) must use the metric system.

• If the AeroDyn reference height (HH) is specified differently than the hub-height in TurbSim
(HubHt), then full-field wind data applied in AeroDyn is now relative to TurbSim’s value
(HubHt) (previously, AeroDyn’s value [HH] was used).

• The input height (Wind Inflow’s Z component, which is the third element of the position
vector) is relative to the ground, not the undeflected hub height. (This only affects the
internals of Wind Inflow.)

3

Figure 1. Schematic of new Wind Inflow module, containing private sub-modules for binary full-

field (FF), hub-height (HH), user-defined (UserWind), coherent turbulence (CT), and four-
dimensional (FD) wind types. AeroDyn will initialize the module by calling WindInf_Init(), get
the velocity by calling WindInf_GetVelocity(), and when finished, call WindInf_Terminate() to

clean up the arrays and close any open files.

• The logic to determine the wind file type has changed:
o If the name of a wind file does not have an extension, it will be assumed to be a

binary full-field file with a “.wnd” extension.

4

o If a “.sum” file with the same root name as a “.wnd” file exists, that “.wnd” file is
assumed to be a full-field file. If a corresponding “.sum” file does not exist, a
“.wnd” file is assumed to be a hub-height wind file. This functions as before,
except in rare situations.

o Other wind file types are determined by their file extensions, so do not use
extensions “.bts”, “.ctp”, “.cts”, “.twr”, or “.fdp” for your hub-height wind files.

• The tower binary files (“.twr”) with the same root name as the full-field binary “.wnd” files
will always be read if they exist.

• In the coherent turbulence parameter (“.ctp”) files, the names of the “.cts” and “.wnd” files
are now relative to the directory where the “.ctp” file is stored (unless the full path for the
“.cts” and/or “.wnd” file is specified).

• The user-defined wind routine UserWind() from source file “UserWind.f90” has been
replaced with a self-contained module in “UserWind.f90”.

FAST v7.00.00
The following items have changed relative to what is documented in the latest FAST User’s
Guide for v6.01 (Jonkman and Buhl, 2005). The changes that also apply to the FAST-to-
ADAMS preprocessor and A2AD v13.00.00 have been marked with “[Also ADAMS]”.

• This version is not backward compatible. That is, you cannot use FAST v7.00.00 to interface
with a version of AeroDyn before AeroDyn v13.00.00.

• [Also ADAMS] Some of the validity checks on input parameters have been improved.

• [Also ADAMS] The number of available blade and tower gages (inputs NBlGages and
NTwGages) has increased from 5 to 9, and gages are now available on all blades. New output
parameters for the local loads and motions at the additional strain gages are named following
the same convention as the outputs for the original 5 gages.

• [Also ADAMS] The offshore wind turbine modeling functionality of HydroDyn is included
as an undocumented feature. We plan to release HydroDyn as a stand-alone hydrodynamics
module, with its own user’s guide, in the future. For those already familiar with the offshore
wind turbine modeling functionality that was available in FAST v6.02c-jmj and A2AD
v12.20c-jmj, the functionality is identical in FAST v7.00.00 and A2AD v13.00.00. For those
not already familiar, the functionality is summarized in the footnote below.*

*HydroDyn in its present form applies to both fixed-bottom monopiles and floating platforms and has been tested by
many users. So while the code is undocumented, it is well tested.

For floating platforms, the hydrodynamics and mooring system models are well documented in J. Jonkman’s 2009
Wind Energy journal article and 2007 PhD thesis-turned NREL report: http://www3.interscience.wiley.com/cgi-
bin/fulltext/122464755/PDFSTART and http://www.nrel.gov/docs/fy08osti/41958.pdf.

For monopiles, no report is available that explains its capability. But to summarize: the monopile hydrodynamics
model accounts for regular or irregular linear waves (with or without stretching) and sea currents and uses the
relative form of Morison's equation for the load calculation. The wave data can be generated internally within the
module, or by reading in (perhaps higher-order) wave data output from GH Bladed or some other wave kinematics
code. (Because the module does not have a higher-order wave kinematics model built into it, if you want to model

http://www3.interscience.wiley.com/cgi-bin/fulltext/122464755/PDFSTART�
http://www3.interscience.wiley.com/cgi-bin/fulltext/122464755/PDFSTART�
http://www.nrel.gov/docs/fy08osti/41958.pdf�

5

• [Also ADAMS] A bug in the “BladedDLLInterface.f90” source file was fixed so the loads
and power are multiplied by 1000 instead of 0.001. Also an incompatibility with the
“BladedDLLInterface.f90” source file and HSSBrMode = 2 was resolved.

• [Also ADAMS] The column headings for invalid channels have been changed to be the
variable name, with the units line saying “INVALID.”

• A bug that produced bad FAST linearization output (“.lin”) file when GBoxEff was specified
to be less than 100% was resolved.

• A new internal parameter has been added to make it easier to change the order of the
polynomials used to specify the blade and tower mode shapes. To change the order, modify
parameter PolyOrd in module Modes of “FAST_Mods.f90” and recompile FAST. To aid in
obtaining the polynomial coefficients by curve-fitting externally provided mode shapes, an
MS Excel workbook “ModeShapePolyFitting.xls” has been added to the FAST archive.

• The function that obtains CPU times has been replaced with an intrinsic (not-system-specific)
function. This means the CPU times between old and new versions are not obtained in
exactly the same way (beware of comparisons). “Total Real Time” is now calculated for the
whole FAST run (instead of just the simulation portion), and the time ratio now is “simulated
time” divided by “total real time.” Simulated CPU time is no longer printed.

• For the first time, the source files needed to compile the FAST S-Function for
MATLAB/Simulink have been added to the archive. These—plus all of the Simulink-related
files—have been included in the new “Simulink” directory of the FAST archive. The
MATLAB script, “make_FAST_SFunc.m,” can be used to recompile the FAST S-Function.
There are compiling instructions at the top of this script. Recompiling may be required to use
the various versions of MATLAB. The S-Function has changed from “FAST_SFunc.dll” to
“FAST_SFunc.mexw32” in MATLAB R2006a and newer.

severe regular waves, you would have to use GH Bladed or some other wave kinematics code to generate the higher-
order wave kinematics data before running a simulation with HydroDyn.

There are several models you can use to start playing with the new offshore features. In addition to the 17 sample
wind turbine models (all onshore) provided in the archive of FAST v7.00.00, five models of the NREL 5-MW
baseline wind turbine are available from here: http://wind.nrel.gov/public/jjonkman/NRELOffshrBsline5MW. These
models include, the (1) onshore version of the 5-MW turbine, (2) the 5-MW turbine installed on a fixed-bottom
monopile with rigid foundation in 20 m of water, (3) the 5-MW turbine installed on the floating ITI Energy barge
(the floating platform J. Jonkman analyzed in his Ph.D. project), (4) the 5-MW turbine installed on a floating
Tension Leg Platform, and (5) the 5-MW turbine installed on a floating spar-buoy (based on the OC3 project’s
modifications to the Hywind concept). The archive for the model of the onshore version of the NREL 5-MW wind
turbine includes a report that documents the turbine. The OC3 model requires a slightly customized version of
HydroDyn, so, this model comes with its own FAST executable; this model also comes with a report that documents
the platform.

Each of these models contains a torque and pitch controller in GH Bladed-style DLL format. These controllers
require FAST’s interface to GH Bladed-style DLLs, which is not a default option in FAST v7.00.00. You can find a
version of FAST with this interface here: http://wind.nrel.gov/public/jjonkman/FAST/FAST_v7.00.00a-
bjj_AeroDyn_v13.00.00a-bjj_BladedDLLInterface.exe. Or if you’re adventurous, you can recompile FAST using
the guidance found in the FAST User’s Guide.

All of the new offshore-related (hydrodynamic and mooring system) inputs are contained in the updated platform
input files.

http://wind.nrel.gov/public/jjonkman/NRELOffshrBsline5MW�
http://wind.nrel.gov/public/jjonkman/FAST/FAST_v7.00.00a-bjj_AeroDyn_v13.00.00a-bjj_BladedDLLInterface.exe�
http://wind.nrel.gov/public/jjonkman/FAST/FAST_v7.00.00a-bjj_AeroDyn_v13.00.00a-bjj_BladedDLLInterface.exe�

6

• Most of the memory leaks in the FAST S-Function for MATLAB/Simulink have been
eliminated, minimizing how often you must close and restart MATLAB after running a series
of simulations.

• The FAST S-Function for MATLAB/Simulink now writes all of its messages to MATLAB’s
Command Window (it does not create the file “console.txt”).

• A new batch file, called “Compile_FAST.bat,” is included in the archive. It compiles FAST
from the command line using Intel Visual Fortran for Windows, but could be modified for
other compilers.

• FAST v7.00.00 uses NWTC_Library source files, and the number of FAST source files has
changed. Most routines have been wrapped inside modules. Please see “Compile_FAST.bat”
in the FAST archive for the list of files and compile options (specifically, /assume:byterecl,
/Qzero, and /Qsave) required to compile FAST with AeroDyn.

• The FAST certification test uses files from the MBC download to calculate system natural
frequencies. Previous versions used a script called “Eigenanalysis.m,” which is no longer
part of the archive. The MBC scripts should be used in place of “Eigenanalysis.m” in all
situations.

• The format of FAST’s linearization output (“.lin”) file has changed to include data needed by
the MBC scripts. Earlier linearization post-processing scripts may not be able to read in the
new format. The MBC scripts should be used for all linearization post processing.

• A new script, called “Simulink_CertTest.m,” to run the certification test for the FAST S-
Function for MATLAB/Simulink has been added to the archive.

• The results of the certification test can be plotted using the new “PlotCertTestResults.m”
script in the FAST archive. An example of how to call the function in MATLAB is given
below (set newPath to your FAST CertTest directory):
newPath = 'D:\DATA\Fortran\IVF Projects\FAST\Release\CertTest';
oldPath = [newPath '\TstFiles'];
PltFAST = true;
PltAdams = true;
PlotSimulink = true;

PlotCertTestResults(newPath, oldPath, PltFAST, PltAdams, PlotSimulink);

• AeroDyn will generate an empty “<RootName>.elm” file when CompAero=FALSE in FAST
and the AeroDyn input file requests an “.elm” file. This should be fixed in a future version.

• The FAST echo file is now named “<RootName>.ech” instead of “echo.out”.

• The length of the input file names are now 1024 characters (most used to be limited to 99
characters).

A2AD (A2AD) v13.00.00
The following items have changed relative to what is documented in the latest A2AD User’s
Guide for v12.19 (Laino and Hansen, 2001). Other changes that also apply to FAST are noted
with “[Also ADAMS]” in the FAST v7.00.00 section above.

http://wind.nrel.gov/designcodes/postprocessors/mbc/�

7

• This version is not backward compatible and is only compatible with ADAMS models
generated by FAST v7.00.00. That is, you cannot use A2AD v13.00.00 with ADAMS
models created by ADAMS/WT or by versions of FAST before FAST v7.00.00; and you
can’t use A2AD v13.00.00 to interface an ADAMS model to a version of AeroDyn before
AeroDyn v13.00.00. Instead of relying solely on the ADAMS statements (Markers, etc.)
defined in A2AD User’s Guide (Laino and Hansen, 2001), A2AD v13.00.00 now uses many
of the statements defined in the FAST-to-ADAMS documentation
(“FAST2ADAMSStatements.xls”).

• Several of the variables needed by AeroDyn (rotor radius, tip- and hub-loss constants, local
rotor radius, hub velocity due to yaw, etc.), which were estimated within A2AD’s
GFOSUB.f90 source file, now take advantage of the ADAMS statements created by the
FAST-to-ADAMS preprocessor. This will influence the simulation results for models with a
nonzero precone, initial nonzero teeter angle, and high yaw rates.

• AeroDyn now checks the RELM array (see comments in the AeroDyn v13.00.00 section,
above). In previous versions, RELM was not used with A2AD.

• Gravity and structural damping are no longer disabled during ADAMS linearization of
FAST-to-ADAMS created models.

• A2AD now checks that the version of A2AD is compatible with the version of FAST from
which an ADAMS model was created.

• Messages from AeroDyn are written to the screen, but not to the MSC.ADAMS message
(“.msg”) file. (That is, the MSC.ADAMS’ USRMES() and ERRMES() subroutines are not
used anymore.)

• A2AD v13.00.00 uses NWTC_Library source files, and the number of A2AD source files
has changed. Most routines have been wrapped inside modules. Please see
“CompileLinkA2AD.bat” in the “DLL” (renamed from “Executable”) folder of the A2AD
archive for the list of files and compile options (/assume:byterecl, /Qzero, and /Qsave,
specifically) required to compile A2AD with AeroDyn.

• The AeroDyn “.opt” file will now be named “<RootName>.opt” instead of “gfosub.opt.”

• The (initial) rotor tilt angle will not be printed in the AeroDyn “.opt” file.

• The “Samples” folder has been eliminated from the archive. Because A2AD v13.00.00 is
only compatible with FAST-to-ADAMS created ADAMS models, use the FAST certification
test to generate sample models for ADAMS.

YawDyn and SymDyn
These programs are no longer supported.

Description of the AeroDyn Interface

The AeroDyn overhaul is progressing in two paths: (1) developing a clear and streamlined
interface between AeroDyn and the various structural-dynamic codes and (2) making the
internals of AeroDyn much more modular such that new aerodynamic theories can be added in

8

the future. The completion of AeroDyn v13.00.00 marks the completion of path (1). The
modularization of AeroDyn with improved functionality from path (2) will come later.

The internal functionality of AeroDyn v13.00.00 is the same as AeroDyn v12.58 (with the
exceptions noted above), but with an improved interface. AeroDyn v13.00.00 has been defined
to streamline the interface with other codes and to encapsulate as many private data and methods
(subroutines and functions) as possible. We cannot guarantee that changes will not be made in
future versions of AeroDyn when we introduce new implementations of aerodynamic theories;
however, effort has been made in this version to minimize the inconvenience of doing so.

To initialize AeroDyn v13.00.00, only one function is called (previously, multiple subroutines
were used). An even bigger change with this new interface is that all the information AeroDyn
requires to calculate loads is passed in one function call. This function is called only once per
time step whereas previous versions called a subroutine to calculate loads at each element on
each blade and each time step.

Data Types
To organize data for the new interface, we have made use of derived data types. These types
allow data to be organized in meaningful ways, and allow the data passed between codes to be
added or deleted with minimal effort. The new shared data types are stored in the
“SharedTypes.f90” source file in the “Source” folder of the AeroDyn archive.

Derived Types Marker and Load
The basic data types for the interface are Marker and Load, which are defined in Fortran as:

TYPE, PUBLIC :: Marker
 REAL(ReKi) :: Position(3)
 REAL(ReKi) :: Orientation(3,3) ! Direction cosine matrix
 REAL(ReKi) :: TranslationVel(3) ! Translational velocity
 REAL(ReKi) :: RotationVel(3) ! Rotational velocity
END TYPE Marker

TYPE, PUBLIC :: Load
 REAL(ReKi) :: Force(3)
 REAL(ReKi) :: Moment(3)
END TYPE Load

Note: The NWTC_Library’s Precision module declares ReKi as:

INTEGER, PARAMETER :: ReKi = 4

All markers in the AeroDyn v13.00.00 interface are body fixed; i.e., they move and orient
themselves with the body they are attached to.

The positions are specified in units of meters, relative to the origin of the global X,Y,Z reference
frame. X,Y,Z represents the set of orthogonal axes of an inertial reference frame fixed with respect to
the undeflected tower centerline (mean location of the support platform for offshore systems), with
the XY-plane designating the ground (or still water level [SWL] for offshore systems), the X axis
pointing in the (nominally) downwind (zero degree wind) direction, the Y axis pointing to the left
looking along the positive X axis, and the Z axis pointing vertically upward opposite gravity

9

along the centerline of the undeflected tower (when the support platform is undisplaced for offshore
systems).

The 3-component position vector is the origin of marker defined such that

X

Marker%Position Y
Z

 
 =  
  

.

The 3-component translational velocity vector is in units of meters per second and the 3-
component rotational velocity vector is in units of radians per second. Both velocity vectors are
relative to the inertial X,Y,Z reference frame.

The orientations are defined as 3-by-3 direction cosine matrices. The direction cosine matrix, D,
rotates a vector defined in the inertial reference frame (upper case letters) to a vector with the
same origin but defined in a reference frame parallel with the body-fixed reference frame (lower
case letters):

x X
y D Y
z Z

   
   =   
      

.

The matrix D must be orthonormal, i.e., D DT = I, where I is the 3-by-3 identity matrix. It is up
to the user to make sure the matrices are orthonormal because AeroDyn v13.00.00 does not
perform this check.

The loads include forces per unit length and moments per unit length in units of Newtons per
meter and Newton-meters per meter.†

AeroDyn needs to have information about the turbine configuration and analysis nodes where the
aerodynamic loads will be calculated. To pass this information, we’ve placed markers in every
body that has a direct influence on the aerodynamic loads, and we’ve placed markers and loads
at all analysis nodes. Each body has one reference marker defined by derived type AeroConfig
and each body may have zero or more analysis node markers and loads defined by derived types
AllAeroMarkers and AllAeroLoads, respectively. The analysis node markers and loads can
move relative to the reference marker of the body they are a part of if the body is not rigid.

 The 3-component force and moment vectors are aligned
with the local body-fixed marker for which the load is associated.

Derived Type AeroConfig
The AeroConfig type contains a reference marker for each body that has a direct influence on
the aerodynamic loads. The marker positions are pictured in Figure 1 and listed below.

†The current version of AeroDyn applies strip theory along the primary axis (one dimension) of the blade. Future
versions of AeroDyn may need analysis nodes for a mesh covering the blade’s surface. In this case, the forces and
moments would be per unit area.

10

TYPE, PUBLIC :: AeroConfig
 TYPE(Marker), ALLOCATABLE :: Blade(:)
 REAL(ReKi) :: BladeLength
 TYPE(Marker) :: Hub
 TYPE(Marker) :: RotorFurl
 TYPE(Marker) :: Nacelle
 TYPE(Marker) :: TailFin
 TYPE(Marker) :: Tower
 TYPE(Marker) :: Substructure
 TYPE(Marker) :: Foundation
END TYPE AeroConfig

These markers for the AeroConfig type must be defined for the undeflected system during
initialization and must be body fixed during loads calculation. Their definitions are described in
the subsections below.

Figure 2. Schematic of AeroConfig data type. Markers give the configuration of the bodies which

can influence aerodynamic loads.

Blade(1)

Blade(2)

Hub

TailFin

Tower

Substructure

Foundation

Nacelle

BladeLength

RotorFurl

11

AeroConfig%Blade
There is one AeroConfig%Blade marker for each blade on the turbine. The markers pitch with
the blades, and their positions are at the blade roots.

• Position: Intersection of the blade’s pitch axis and the blade root.

• Orientation:
o x axis: Orthogonal with y and z axes such that they form a right-handed coordinate

system.

o y axis: Pointing towards the trailing edge of the blade and parallel with the chord
line at the zero-twist blade station.

o z axis: Pointing along the pitch axis towards the tip of the blade.

AeroConfig%BladeLength
This value is the length of the undeflected blade from the blade root to the blade tip along the
pitch axis. It is only needed by AeroDyn during initialization.

AeroConfig%Hub
The AeroConfig%Hub marker rotates with the rotor and teeters with the rotor in two-bladed
models.

• Position: Location of the apex of rotation

• Orientation:
o x axis: Pointing along the hub centerline in the nominally downwind direction.

o y axis: Orthogonal with the x and z axes such that they form a right-handed
coordinate system.

o z axis: Perpendicular to the hub centerline with the same azimuth as Blade 1.

AeroConfig%RotorFurl
The AeroConfig%RotorFurl marker does not rotate with the rotor, but it does move with the
tower and yaws, yaws with the nacelle, and furls with the rotor.

• Position: Location of the teeter pin for 2-bladed rotors or the apex of rotation for 3-bladed
rotors.

• Orientation:
o x axis: Pointing along the (possibly tilted) shaft in the nominally downwind

direction.

o y axis: Pointing to the left when looking from the tower toward the nominally
downwind end of the nacelle.

o z axis: Orthogonal with the x and y axes such that they form a right-handed
coordinate system.

AeroConfig%Nacelle
The AeroConfig%Nacelle marker moves with the top of the tower and yaws with the nacelle.

12

• Position: Intersection of the tower’s yaw axis and the yaw bearing.

• Orientation:
o x axis: Pointing horizontally toward the nominally downwind end of the nacelle.

o y axis: Pointing to the left when looking toward the nominally downwind end of
the nacelle.

o z axis: Coaxial with the tower/yaw axis and pointing up.

AeroConfig%TailFin
This marker is not currently used.

AeroConfig%Tower
The AeroConfig%Tower marker is fixed in the base of the tower so that it translates and rotates
with the tower base.

• Position: Intersection of the tower-base centerline and the tower-base connection to the
substructure.

• Orientation:
o x axis: Pointing horizontally in the nominally downwind direction.

o y axis: Pointing to the left when looking in the nominal downwind direction.

o z axis: Coaxial with the tower-base centerline and pointing up.

AeroConfig%Substructure
This marker is not currently used.

AeroConfig%Foundation
This marker is not currently used.

Derived Types AllAeroMarkers and AllAeroLoads
Types AllAeroMarkers and AllAeroLoads define the markers and loads at the aerodynamic
analysis points. AeroDyn v13.00.00 calculates loads only in the blades, but in the future,
versions will use the placeholders for loads calculated at the hub, rotor-furl, nacelle, tower, and
tail fin:

TYPE, PUBLIC :: AllAeroMarkers
 TYPE(Marker), ALLOCATABLE :: Blade(:,:)
 TYPE(Marker), ALLOCATABLE :: Hub(:)
 TYPE(Marker), ALLOCATABLE :: RotorFurl(:)
 TYPE(Marker), ALLOCATABLE :: Nacelle(:)
 TYPE(Marker), ALLOCATABLE :: Tower(:)
 TYPE(Marker), ALLOCATABLE :: Tail(:)
END TYPE AllAeroMarkers

13

TYPE, PUBLIC :: AllAeroLoads
 TYPE(Load), ALLOCATABLE :: Blade(:,:)
 TYPE(Load), ALLOCATABLE :: Hub(:)
 TYPE(Load), ALLOCATABLE :: RotorFurl(:)
 TYPE(Load), ALLOCATABLE :: Nacelle(:)
 TYPE(Load), ALLOCATABLE :: Tower(:)
 TYPE(Load), ALLOCATABLE :: Tail(:)
END TYPE AllAeroLoads

AllAeroMarkers%Blade
There is a AllAeroMarkers%Blade marker at each aerodynamic analysis node on all blades of
the turbine. The markers pitch and deflect with the blades, and their positions are at the center of
the aerodynamic elements located by the RELM input in AeroDyn’s input file.

• Position: The location of the aerodynamic analysis node.

• Orientation:
o x axis: Orthogonal with y and z axes such that they form a right-handed coordinate

system.

o y axis: Aligned with the local chord line pointing toward the trailing edge.

o z axis: Directed along the blade toward the tip.

AllAeroLoads%Blade
There is one AllAeroLoads%Blade load associated with each AllAeroMarkers%Blade marker at
each aerodynamic analysis node on all blades of the turbine. Their force and moment
components are applied at the same position and orientation as the marker they are associated
with.

Other Derived Types
Other types are also defined for passing options to the functions to initialize AeroDyn and
calculate aerodynamic loads. Those types are defined in the “AeroDyn.f90” source file and are
discussed in this document with the methods that use them.

Public Methods
The AeroDyn interface includes the following public methods: (1) function AD_Init() to
initialize the necessary variables; (2) function AD_CalculateLoads() to calculate the
aerodynamic loads at every time step; (3) subroutine AD_Terminate() to clean up after the
program ends; and (4) functions AD_GetConstant(), AD_GetCurrentValue(), and
AD_GetUndisturbedWind() to return values that might be needed by the structural code linked
with AeroDyn. An overview of the module is shown in Figure 2 and the methods are described
below.

14

AeroDyn Module
uses many other internal modules, which should be private

Private (internal) data
Private (internal) methods

Public data:
AD_Prog%Name The name of this module
AD_Prog%Ver The version (and date) of this module

Public methods:
AD_Init Initialization function

Input: Name of the input file, <RootName> for the output file(s), option to write a
summary file, turbine configuration markers
Output: Relative markers for aerodynamic loads, error status

AD_CalculateLoads Main function to calculate aerodynamic loads
Input: Current time, markers at locations to compute aerodynamic loads, turbine
configuration markers, options for linearization and multiple airfoil table locations
Output: Loads at the aerodynamic markers, error status

AD_GetConstant Function to return values that do not change with time
Input: Name of requested value
Output: Requested constant, error status

AD_GetCurrentValue Function to return values of variables that change with time
Input: Name of requested value
Output: Requested variable, error status

AD_GetUndisturbedWind Function to return the inflow wind speed
Input: Time, position vector
Output: Velocity vector, error status

AD_Terminate Subroutine to clean up internal variables and close files
Output: Error status

Figure 3. Layout of AeroDyn v13.00.00 module.

AD_Init
a function to initialize AeroDyn: it reads the input file, initializes the wind inflow module, and
returns the markers of the aerodynamic discretization.

15

Syntax
Result = AD_Init(AD_InitOptions_type, AeroConfig_type, ErrStat)

AD_InitOptions_type
is a variable of derived data type AD_InitOptions, containing three components: (1) the name
of the AeroDyn input file, (2) the root name which is used to name the output files (“.opt” and
“.elm”), and (3) a true/false flag that determines if the AeroDyn “.opt” summary file should be
generated. In the future, items may be added or removed from this data type. The definition in
Fortran is

TYPE :: AD_InitOptions
 CHARACTER(1024) :: ADInputFile ! Name of the AeroDyn input file
 CHARACTER(1024) :: OutRootName ! Root name of AeroDyn output files
 LOGICAL :: WrSumFile ! Write an AeroDyn summary file?
END TYPE AD_InitOptions

AeroConfig_type‡

is a variable of derived data type AeroConfig (defined in the

Data Types section). The markers
contained in it must be for the undeflected system.

ErrStat
is a (default kind) INTEGER variable that indicates if an error was encountered during
initialization. If an error is encountered, AeroDyn will return a non-zero ErrStat error code (in
some instances AeroDyn will still abort the program, but in the future, we intend to have
AeroDyn always send an error code to the calling program instead). The calling program should
check ErrStat and end if appropriate.

‡To translate the interface data of AeroDyn v13.00.00 into information that was used in the AeroDyn v12.58
interface, AeroDyn v13.00.00 uses the AeroConfig_type variable to determine the following information during
initialization:

• NumBlades = SIZE(AeroConfig_type%Blade(:))

• HubRadius = DOT_PRODUCT(AeroConfig_type%Blade(1)%Position(:) -
AeroConfig_type%Hub%Position(:), AeroConfig_type%Blade(1)%Orientation(3,:))

• TipRadius = AeroConfig_type%BladeLength + HubRadius

• PreconeAngle = ASIN(DOT_PRODUCT(AeroConfig_type%Blade(1)%Orientation(3,:),
AeroConfig_type%Hub%Orientation(1,:)))

Note if the AeroConfig_type%Blade markers for blades other than 1 give a different HubRadius or PreconeAngle,
AeroDyn will write a warning to the screen.

Note also that FAST v7.00.00 calls this function using markers relative to the hub. In future versions, we plan to
change this so that the markers are passed in way defined in the Data Types section.

16

Result§

The result is a variable of derived data type AllAeroMarkers (defined in the

Data Types section)
containing positions and orientations of the aerodynamic markers relative to the blade root. The
components of the AllAeroMarkers type are determined by the aerodynamic analysis node
locations and corresponding aerodynamic twists. The markers contained in it are in the
undeflected system with the positions and orientations relative to the blade root (defined in the
input variable AeroConfig_type%Blade reference frame). The blade markers are a two-
dimensional array of size (J, K), where J is the number of aerodynamic elements per blade
(defined in AeroDyn’s input file) and K is the number of blades. The other components of the
AllAeroMarkers type are not defined in v13.00.00 because AeroDyn currently computes loads
on only the blade elements.

AD_CalculateLoads
a function to calculate aerodynamic loads at the aerodynamic analysis markers determined in
AD_Init().

Syntax
Result = AD_CalculateLoads(CurrentTime, AllAeroMarkers_type, AeroConfig_type,
CurrentADOptions, ErrStat)

CurrentTime**

is a number of type REAL(ReKi) that tells AeroDyn the current time in the simulation.

§To translate the information that was used in the AeroDyn v12.58 to the interface data of AeroDyn v13.00.00,
AeroDyn v13.00.00 defines the AD_Init() result to be the following:

()
0
0

()
Result%Blade J,K %Position

RELM J HubRadius

 
 =  
 − 

()
() ()
() ()

co s () sin () 0
sin () co s () 0

0 0 1

TWIST J TWIST J
Result%Blade J,K %Orientation TWIST J TWIST J

− 
 =  
  

In AeroDyn v13.00.00, the result for each element J on blade K is assumed to be equal for all blades.

**In AeroDyn v13.00.00, if the time from the previous aerodynamic load calculations is at least DTAero (the
aerodynamic time step defined in AeroDyn’s input file), new loads will be calculated; otherwise it returns the
previously calculated loads. This CurrentTime variable allowed us to remove AeroDyn’s timing variables from the
structural code, making AeroDyn responsible for determining if aerodynamic loads should be calculated.

17

AllAeroMarkers_type††

is a variable of derived type AllAeroMarkers (defined in the

Data Types section) that tells
AeroDyn the current motion of the markers for the aerodynamic loads. AeroDyn v13.00.00 does
not check the size of the components, but it assumes they are the same size as the result of

††To translate the interface data of AeroDyn v13.00.00 into information that was used in the AeroDyn v12.58
interface, AeroDyn v13.00.00 uses the AllAeroMarkers_type and AeroConfig_type variables to determine the
following information at each new aerodynamic time step:

• RotorSpeed = ABS(DOT_PRODUCT(AeroConfig_type%Hub%RotationVel(:) -
 AeroConfig_type%RotorFurl%RotationVel(:),
 AeroConfig_type%Hub%Orientation(1,:)))

• YawAngle = ATAN2(-1.* AeroConfig_type%RotorFurl%Orientation(1,2),
 AeroConfig_type%RotorFurl%Orientation(1,1))

• AvgVelNacelleRotorFurlYaw = AeroConfig_type%RotorFurl%RotationVel(3) –

 AeroConfig_type%Nacelle%RotationVel(3)

AvgVelTowerBaseNacelleYaw = AeroConfig_type%Nacelle%RotationVel(3) -
 AeroConfig_type%Tower%RotationVel(3)

AvgVelTowerBaseYaw = AeroConfig_type%Tower%RotationVel(3)

rRotorFurlHub(1:2) = AeroConfig_type%Hub%Position(1:2) -
 AeroConfig_type%RotorFurl%Position(1:2)

rNacelleHub(1:2) = AeroConfig_type%Hub%Position(1:2) -
 AeroConfig_type%Nacelle%Position(1:2)

rTowerBaseHub(1:2) = AeroConfig_type%Hub%Position(1:2) -
 AeroConfig_type%Tower%Position(1:2)

HubVDue2Yaw = (AvgVelNacelleRotorFurlYaw * rRotorFurlHub(2) +
 AvgVelTowerBaseNacelleYaw * rNacelleHub(2) +
 AvgVelTowerBaseYaw * rTowerBaseHub(2)) * SIN(YawAngle) -
 (AvgVelNacelleRotorFurlYaw * rRotorFurlHub(1) +
 AvgVelTowerBaseNacelleYaw * rNacelleHub(1) +
 AvgVelTowerBaseYaw * rTowerBaseHub(1)) * COS(YawAngle)

• TiltAngle = ATAN2(AeroConfig_type%RotorFurl%Orientation(1,3),
 SQRT(AeroConfig_type%RotorFurl%Orientation(1,1)**2 +
 AeroConfig_type%RotorFurl%Orientation(1,2)**2))

• AzimuthAngle(K) = ATAN2(-1.*DOT_PRODUCT(AeroConfig_type%Hub%Orientation(3,:),
 AeroConfig_type%RotorFurl%Orientation(2,:)),
 DOT_PRODUCT(AeroConfig_type%Hub%Orientation(3,:),
 AeroConfig_type%RotorFurl%Orientation(3,:)))
 + pi + (K - 1)*TwoPiNB

• ElementPitch(J,K) = -1.*ATAN2(-1.*DOT_PRODUCT(
 AeroConfig_type%Blade(K)%Orientation(1,:),
 AllAeroMarkers_type%Blade(J,K)%Orientation(2,:)) ,
 DOT_PRODUCT(
 AeroConfig_type%Blade(K)%Orientation(1,:),
 AllAeroMarkers_type%Blade(J,K)%Orientation(1,:)))

• tmpVector = AllAeroMarkers_type%Blade(J,K)%Position(:) - AeroConfig_type%Hub%Position(:)

rLocal(J,K) = SQRT(DOT_PRODUCT(tmpVector, AeroConfig_type%Hub%Orientation(2,:))**2
 + DOT_PRODUCT(tmpVector, AeroConfig_type%Hub%Orientation(3,:))**2)

Note that to get the same answers as AeroDyn v12.58, (1) RotorSpeed is calculated by subtracting the
AeroConfig_type%RotorFurl rotational velocity, but AeroConfig_type%RotorFurl should not be needed in general;
(2) YawAngle and TiltAngle use AeroConfig_type%RotorFurl instead of AeroConfig_type%Hub; and (3) the
AzimuthAngle calculation uses the equation above, instead of one using AeroConfig_type%Blade markers.

18

AD_Init(). The markers contained in it must be defined for the body-fixed system. Currently,
only the markers on the blades are defined.

AeroConfig_type††,‡‡

is a variable of derived data type AeroConfig (defined in the

Data Types section) that tells
AeroDyn the current configuration of each turbine body that has influence on the aerodynamic
loads. The markers contained in it must be defined for the body fixed system.

CurrentADOptions
A variable of type AeroLoadsOptions, defined below, sets some options, including whether or
not the multiple airfoil table location option is used and if this is a linearization step.

TYPE, PUBLIC :: AeroLoadsOptions
 LOGICAL, ALLOCATABLE :: SetMulTabLoc(:,:)
 REAL(ReKi),ALLOCATABLE :: MulTabLoc(:,:) ! multiple airfoil table location
 LOGICAL :: LinearizeFlag
END TYPE AeroLoadsOptions

The SetMulTabLoc component should be the same size as the AllAeroMarkers_type%Blade
component. For each blade element, AeroDyn checks if this option is used. If it is TRUE,
AeroDyn uses the value in the corresponding blade element of the MulTabLoc component array.
These two components of the AeroLoadsOptions type keep the functionality of AeroDyn’s
previous MulTabLoc variable. Most users can set SetMulTabLoc(:,:) = FALSE.

The LinearizeFlag component tells AeroDyn to calculate aerodynamic loads—even if the
difference between the CurrentTime and the last time loads were calculated is not greater than
AeroDyn’s DTAero input parameter. This should only be TRUE during model linearization.

ErrStat
is a (default kind) INTEGER variable that indicates if an error was encountered in the function.
If an error is encountered, AeroDyn will return a non-zero ErrStat error code (in some instances
AeroDyn will still abort the program, but in the future, we intend to have AeroDyn always send
an error code to the calling program instead). The calling program should check ErrStat and end
if appropriate.

‡‡Note that to get the same results in FAST v7.00.00 and A2AD v13.00.00 as were obtained with AeroDyn v12.58,
not all of the AeroConfig_type markers are passed in the way defined in the Data Types section:

• The AeroConfig_type%Blade orientations are passed using the coned system instead of the pitched system
because AeroDyn v12.58 calculates forces normal and tangential to the cone of rotation.

• The AeroConfig_type%Hub marker is passed using the shaft tip frame instead of the hub frame because
AeroDyn v12.58 treats teeter deflections like blade deflections.

• The AeroConfig_type%RotorFurl position is defined using a point on the rotor-furl axis instead of the shaft
tip because of AeroDyn v12.58’s definition of HubVDue2Yaw (hub velocity due solely to yaw).

• The AeroConfig_type%Tower position is defined using the body-fixed platform reference point instead of a
point at the base of the tower because of AeroDyn v12.58’s definition of HubVDue2Yaw.

19

Result§§

The result is a variable of derived data type AllAeroLoads (defined in the

Data Types section)
containing the aerodynamic loads (forces and moments) at all aerodynamic markers on the
blades. The other components of the AllAeroLoads type are not defined in v13.00.00 because
AeroDyn currently computes loads on only the blade elements.

AD_Terminate
is a subroutine that closes any files that AeroDyn opens and deallocates the arrays that AeroDyn
allocated space for. This subroutine is used to prevent memory leaks and locked files when
AeroDyn is linked with other codes. It should be called before ending the program that calls
AeroDyn.

Syntax
CALL AD_Terminate(ErrStat)

ErrStat
is a (default kind) INTEGER variable that indicates if an error was encountered in the
subroutine. If an error is encountered, AeroDyn will return a non-zero ErrStat error code.
Otherwise, ErrStat is zero.

AD_GetConstant
is a function that returns the values of parameters and arrays that do not change after AeroDyn
has been initialized. These constant values are either parameters (contained in the source code)
or are contained in AeroDyn’s input file. This function currently returns values that are needed
to support existing functionality of the calling structural codes; the possible values may be
modified in the future.

Syntax
result = AD_GetConstant(VarName, ErrStat)

§§To translate the information that was used in the AeroDyn v12.58 to the interface data of AeroDyn v13.00.00,
AeroDyn v13.00.00 defines the AD_CalculateLoads() result to be the following:

()
() () () ()
() () () () ()

% , %

, co s (,) , sin (,)
1, sin (,) , co s (,)

0

Result Blade J K Force

DFN J K ElementPitch J K DFT J K ElementPitch J K
DFN J K ElementPitch J K DFT J K ElementPitch J K

DR J

=

+ 
 − + 
  

()
()

()

0
% , % 0

,
Result Blade J K Moment

PMA J K
DR J

 
 
 

=  
 
 
  

20

VarName
is a character string input indicating the name of the requested variable. Valid entries are listed in
Table 1.

ErrStat
is a (default kind) INTEGER variable that indicates if an error was encountered. ErrStat is zero
if there was no error; otherwise AeroDyn will return a non-zero ErrStat error code. The calling
program should check ErrStat to determine if the result is meaningful.

Result
The result is a number of type REAL(ReKi) containing the requested value.

AD_GetCurrentValue
is a function that returns the values of parameters and arrays that depend on AeroDyn’s current
state. This function currently returns values that are needed to support existing functionality of
the calling structural codes; the possible values may be modified in the future.

Syntax
result = AD_GetCurrentValue(VarName, ErrStat [, IBlade] [, IElem])

VarName
is a character string input indicating the name of the requested variable. Valid entries are listed in
Table 2.

Table 2. . List of Valid VarName Values in Function AD_GetCurrentValue().

VarName Returned value
AVGINFL

AVGINFLOW
The average induced inflow across the rotor disc for the previous time
step (used for tail fin aerodynamics).

W2 W2(IElem, IBlade) (used for FAST’s noise routines)

ALPHA Alpha(IElem, IBlade): angle of attack for element IElem of blade IBlade
(used for FAST’s noise routines).

Table 1. List of Valid VarName Values in Function AD_GetConstant().

VarName Returned value
UNADIN
ADUNIT Unit number of AeroDyn input file.

REFHT
HH The wind reference height defined in the AeroDyn input file.

DT
DTAERO AeroDyn time step.

AIRDENSITY
RHO Air density.

KINVISC Kinetic viscosity.

21

ErrStat
is a (default kind) INTEGER variable that indicates if an error was encountered. ErrStat is zero
if there was no error; otherwise AeroDyn will return a non-zero ErrStat error code. The calling
program should check ErrStat to determine if the result is meaningful.

IBlade
is a (default kind) INTEGER variable that indicates the index for the blade, if the returned value
is part of an array.

IElem
is a (default kind) INTEGER variable that indicates the index for the blade element, if the
returned value is part of an array.

Result
The result is a number of type REAL(ReKi) containing the requested value.

AD_GetUndisturbedWind
is a function that can be used to return the undisturbed wind speeds at any position and time for
which the wind is defined.

Syntax
result = AD_GetUndisturbedWind(Time, InputPosition, ErrStat)

Time
is a number of type REAL(ReKi) that indicates the time in seconds from the start of the
simulation when wind speeds are desired. (This time can differ from the current simulation time.)

InputPosition
is an array with three elements of type REAL(ReKi). This array is the position vector defined in
units of meters relative to the origin of the X,Y,Z reference frame.

ErrStat
is a (default kind) INTEGER variable that indicates if an error was encountered. ErrStat is zero
if there was no error; otherwise AeroDyn will return a non-zero ErrStat error code. The calling
program should check ErrStat to determine if the result is meaningful.

Result
The result is an array with three elements of type REAL(ReKi). The returned array contains the
U-, V-, and W- component wind speeds at the specified time and location, which are not affected
by the turbine wake or any other disturbances. These velocities are aligned with the inertial
X,Y,Z coordinate system and are in units of meters per second.

Issues That Must Be Resolved in Later Versions of the AeroDyn
Interface

The interface to AeroDyn v13.00.00 has not completely resolved all of the issues that we hope to
address. To be fully modular, we need to keep the module’s internal details encapsulated,

22

limiting the ways that the structural routines are allowed to access AeroDyn’s data and methods.
Some of the remaining issues are:

• The structural codes call CLCD() for tail fin aerodynamics. We hope to include the tail fin
aerodynamics in AeroDyn in a future release, removing the need for other codes to call this
internal AeroDyn subroutine.

• The structural codes call ElemOut() to write the output to AeroDyn’s “<RootName>.elm”
file. AeroDyn should handle its own output files.

• FAST checks for an instability in the dynamic inflow calculations and the turns off
AeroDyn’s DYNIN switch if necessary. AeroDyn needs to fix this instability.

• FAST’s Input() routine uses AeroDyn variables to check for valid inputs. This is done mostly
for linearization. Linearization functionality should be added to AeroDyn.

• The MulTabLoc option passed from the structural code has not been tested. We plan to
replace the functionality of MulTabLoc with improved aerodynamics controls functionality in
a future version of AeroDyn.

• FAST requires the Chord array from AeroDyn’s input file. Chord is used for AeroCent,
ADAMS graphics, and the Noise module.

• The linearization routines in FAST required some modifications to the wind-inflow module.
We may make a new input file for the wind inflow that could deal with linearization.

• AeroDyn’s DiskVel() subroutine currently uses knowledge of the wind-inflow file type to
calculate an “average” rotor-disk velocity. We want to remove this requirement so that the
average velocity does not change with different wind file types.

• AeroDyn checks that the mean velocity in binary full-field wind files is at least 8 meters per
second before allowing dynamic inflow to be used. (This check is not done for other wind
file types.) We do not want AeroDyn to check for specific wind file types.

